scor

FacebookTwitter

Casacuberta and co-authors (2016, see reference below) propose the first set of data for the artificial radionuclide 236-Uranium (236U) in the Arctic Ocean. The novelty of this study compared to the first comprehensive dataset they published in the western North Atlantic Ocean (GEOTRACES GA02 section), is the combination of 236U with 129-Iodine (129I). The 236U/238U and 129I/236U atomic ratios allow them to distinguish the sources of these two artificial radionuclides to the Arctic Ocean, an approach that would not be possible if only using individual concentrations of 236U, 129I or any other anthropogenic radionuclide. For example, using these ratios in a binary mixing model, they could identify Siberian rivers as potential source of artificial radionuclides in the Arctic Ocean, other than the global fallout and the European Reprocessing plants of Sellafield and La Hague. The highly sensitivity of the measurements of these two radionuclides using Accelerator Mass Spectrometry, also allows the detection of very low concentrations of both radionuclides. This dual tracer approach could therefore become an extremely sensitive tool to study isolation ages of deep and bottom waters of the Amerasian Basin.

16 CasacubertaFigure: 129I/236U atom ratio in surface waters of the Arctic Ocean (2011/2012). Atlantic Waters (dashed black line) have higher ratios showing a greater influence of Reprocessing Plants signal. Pacific Waters (dashed purple line) are more influenced by global fallout.

Reference:

Casacuberta, N., Masqué, P., Henderson, G., Rutgers van-der-Loeff, M., Bauch, D., Vockenhuber C., Daraoui A., Walther C., Synal H.-A., Christl M. (2016). First 236U data from the Arctic Ocean and use of 236U/238U and 129I/236U as a new dual tracer. Earth and Planetary Science Letters, 440, 127–134. doi:10.1016/j.epsl.2016.02.020

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.