scor

FacebookTwitter

The reliability of the GEOTRACES data products including the eGEOTRACES Electronic Atlas is strongly related to the quality of the data acquired by the different laboratories contributing to this international effort. A key aspect for assessing this quality relies on the good intercomparison of the trace metal data. Iron (Fe) concentrations and moreover Fe isotopes count among the most delicate parameters to be measured in seawater.

Conway (Switzerland), John (USA) and Lacan (France) (2016, see reference below) present the first comparison of dissolved Fe stable isotope ratio profiles in the oceans, analyzed at different depths at 3 different GEOTRACES crossover stations in the Atlantic Ocean (Bermuda Atlantic Time Series Station, off Cape Verde and in the Cape Basin, south Atlantic).

Having assessed the strong agreement between data and profiles measured by 5 different laboratories at Bermuda Atlantic Time Series (BATS), the authors discuss the temporal variability observed at the three locations, taking advantage of reoccupation of the stations by multiple cruises on a 1-3 year timescale. The authors find that the deep ocean at these locations is largely invariant for Fe isotopes on these timescales, but that there is variability in surface waters and near low-oxygen margins.

16 Conway l
Figure:
Comparison of δ56Fe (relative to IRRM-014) and Fe data from Bermuda Atlantic Time Series (BATS) in the subtropical North West Atlantic (31.75°N 64.17°W) from the U.S. GEOTRACES IC1 (June 2008) and GA03 cruises (USGT11, Nov. 2011). Data are reproduced from Boyle et al. (2012); Conway and John (2014a); Conway et al. (2013a; 2013b); John and Adkins (2012). Please click here to view the figure larger.


References:

Conway, T. M., John, S. G., & Lacan, F. (2016). Intercomparison of dissolved iron isotope profiles from reoccupation of three GEOTRACES stations in the Atlantic Ocean. Marine Chemistry. doi:10.1016/j.marchem.2016.04.007

> Figure references:

Boyle et al., 2012: E.A. Boyle, S.G. John, W. Abouchami, J.F. Adkins, Y. Echegoyen-Sanz, M.J. Ellwood, A.R. Flegal, K. Fornace, C. Gallon, S. Galer, M. Gault-Ringold, F. Lacan, A. Radic, M. Rehkämper, O. Rouxel, Y. Sohrin, C. Stirling, C. Thompson, D. Vance, Z. Xue, Y. Yhao. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnol. Oceanogr. Methods, 10 (2012), pp. 653–665. doi: 10.4319/lom.2012.10.653

Conway and John, 2014a: T.M. Conway, S.G. John. Quantification of dissolved iron sources to the North Atlantic Ocean Nature, 511 (2014), pp. 212–215. doi:  10.1038/nature13482

Conway et al., 2013a:  T.M. Conway, A.D. Rosenberg, J.F. Adkins, S.G. John. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry Anal. Chim. Acta, 793 (2013), pp. 44–52. doi: 10.1016/j.aca.2013.07.025

Conway et al., 2013b: T.M. Conway, A.D. Rosenberg, J.F. Adkins, S.G. John. Corrigendum to “A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry.” Anal. Chim. Acta, 801 (97) (2013). doi: 10.1016/j.aca.2013.09.010

John and Adkins, 2012: S.G. John, J.F. Adkins. The vertical distribution of iron stable isotopes in the North Atlantic near Bermuda Glob. Biogeochem. Cycles, 26 (2) (2012) doi: 10.1029/2011GB004043

 

 

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.