The striking extension of the dissolved iron and manganese plumes over more than 4000 km from their hydrothermal sources along the US GEOTRACES East Pacific Zonal Transect (EPZT) cruise (GP16) has challenged our understanding of these element cycles (Resing et al., 2015 see GEOTRACES science highlight).

Fitzsimmons and co-workers (2017, see reference below) analysed the particulate iron and manganese (Mn) in the same plume and showed that they also exceed background concentrations, even 4,000 km from the vent source, despite anticipated gravitational settling losses. Both dissolved and particulate Fe plumes deepen by more than 350 m relative to the conservative helium-3 (3He) one, while the Mn plumes do not show such descent.

Based on Fe speciation and isotope data, the authors suggest that dissolved iron fluxes and geospatial positioning may depend on the balance between stabilization in the dissolved phase by organic ligands and the reversibility of exchange onto sinking particles.

17 Fitzsimmons l

Figure:  Interpolated concentrations and station map along the US GEOTRACES EPZT (GP16) section. a, Map of the station locations (colours corresponds to bathymetry; green hues shallower) b, Excess 3He concentrations in fmol kg−1. c, Dissolved Fe concentrations (<0.2 µm, in nM). d, Dissolved Mn concentrations (<0.2 µm, in nM). e, Particulate Fe (>0.45µm, in nM). f, Particulate Mn (>0.45µm, in pM). The black reference line at 2,500m in each panel highlights  the deepening of the Fe plumes. Ocean Data View was used to carry out the simulations. Click here to view the figure larger.



Fitzsimmons, J. N., John, S. G., Marsay, C. M., Hoffman, C. L., Nicholas, S. L., Toner, B. M., German, C. R., Sherrell, R. M. (2017). Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nature Geoscience. DOI: 10.1038/ngeo2900

Resing, J. A., Sedwick, P. N., German, C. R., Jenkins, W. J., Moffett, J. W., Sohst, B. M., & Tagliabue, A. (2015). Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature, 523(7559), 200–203. DOI: 10.1038/nature14577

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Colloids Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Dissolved Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)


 Data Assembly Centre (GDAC)


Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.