scor

FacebookTwitter

Models simulating any oceanic tracer biogeochemistry require a good depiction of the particle distribution, key to incorporating properly scavenging-remineralization processes. However, this kind of description is still rare.

Gardner and co-workers (2018, see reference below) are providing an exceptional compilation of the Benthic Nepheloid Layers (BNL) around the world.

BNLs have been mapped using 6,392 full-depth profiles of beam attenuation made during 64 cruises using their transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Not surprisingly, intense BNLs are observed where eddy kinetic energy (EKE, see figure below) in overlying waters, mean kinetic energy 50 m above bottom, and energy dissipation in the bottom boundary layer are the highest. Therefore, intense BNLs are observed in the Western North Atlantic, the Argentine Basin, parts of the Southern Ocean and areas around South Africa. Contrastingly, most of the Pacific, Indian, and Atlantic central basins do not display strong sediment resuspension.

 18 Gardner
Figure: Map of log of surface eddy kinetic energy (EKE) based on satellite observations during 2002–2006 with transmissometer station locations superimposed.
Please click here to view the figure larger.

Reference:

Gardner, W.D., M.J. Richardson, A.V. Mishonov. Global Assessment of Benthic Nepheloid Layers and Linkage with Upper Ocean Dynamics. Earth and Planetary Science Letters 482 (2018) 126–134. https://doi.org/10.1016/j.epsl.2017.11.008   

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.