scor

FacebookTwitter

Contrasting fates of the cadmium-cadmium isotopes in the Kuroshio and Oyashio environmental systems

Yang et al. (2018, see reference below) studied the relative importance of physical and biogeochemical processes on controlling the isotopic composition of dissolved and particulate cadmium (Cd) in a GP18 transect, crossing over the relatively cold and eutrophic Oyashio Extension region and the relatively warm and oligotrophic Kuroshio Extension region. Particulate samples revealed preferential uptake of light Cd isotopes by the biological activity. However, the fractionation effect varied dramatically in the surface water of the two regions, larger fractionation factors being observed in the Oyashio Extension region. The cycling in the Kuroshio Extension region was found to follow a closed system fractionation model, whilst the cycling of the Oyashio Extension region fits a steady-state open system fractionation model better. The findings are consistent with the hydrographic contrast in the two regions. In terms of the deep water, physical mixing controls the variations of dissolved Cd concentrations and isotopic composition.

2018 Yang
Figure:
Locations of sampling stations and averaged chlorophyll a concentrations in 2011. Stations TR13, TR15 and TR16 are located in Oyashio extension region, whereas the other stations are located in Kuroshio extension region. Fig. B and C:
Transects of dissolved Cd concentrations and isotopic composition of the studied region, showing comparable distribution in the deep water and contrasting vertical gradient in the thermocline and surface water among Kuroshio and Oyashio stations. Click here to view the figure larger.

Reference:

Yang, S.-C. C., Zhang, J., Sohrin, Y., & Ho, T.-Y. Y. (2018). Cadmium cycling in the water column of the Kuroshio-Oyashio Extension region: Insights from dissolved and particulate isotopic composition. Geochimica et Cosmochimica Acta, 233, 66–80. http://doi.org/10.1016/j.gca.2018.05.001

 

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.