scor

FacebookTwitter

Chemical species are constantly exchanged between seawater (solution, D) and particles (solid material, P). This continuous D-P exchange is a key process determining the chemical composition of the ocean. Particles are heterogeneous materials, made of (i) biological material from the surface ocean, (ii) lithogenic material from external inputs to the ocean, and (iii) authigenic (oxyhydr)oxides precipitation in the water column. Understanding the role of each of these phases in driving the D-P exchange is therefore a major issue.

Lerner and co-workers (2018, see reference below) propose to disentangle the particle composition effect on the thorium adsorption rate constant k1 using two different regression models. Model I considers biogenic particles, lithogenic particles, Mn (oxyhydr)oxides, and Fe (oxyhydr)oxides as regressors, and k1 as the regressand. Model II considers ln(biogenic particles), ln(lithogenic particles), ln(Mn (oxyhydr)oxides), and ln(Fe (oxyhydr)oxides) as regressors, and ln(k1) as the regressand, where ln() denotes the natural logarithm. Thus, models I and II posit that the effects of particle phases on k1 are, respectively, additive and multiplicative. Regressions are considered separately in two regions of the North Atlantic: an upwelling region off the western margin of Mauritania, and an open-ocean region east of Bermuda.

The authors find that model II better describes the effect of particle composition on k1. Based on this regression model, the authors find that Mn (oxyhydr)oxides have a stronger effect on k1 in the open-ocean region, and biogenic particles have a stronger effect on k1 in the upwelling region.

18 Lerner

Figure: Relative Importance (RI) of particle phases for influencing the thorium adsorption rate constant, k1, under the additive model (upper panels) and the multiplicative model (lower panels). Results shown at all stations (a,d), open-ocean stations (b,e), and Mauritanian upwelling stations (c,f). The red and blue bars show two different methods to obtain RI values. Biogenic particles and Mn (oxyhydr)oxides have the strongest relationship to k1, depending on the model and stations considered. Click here to view the figure larger.

Reference:

Lerner, P., Marchal, O., Lam, P. J., & Solow, A. (2018). Effects of particle composition on thorium scavenging in the North Atlantic. Geochimica et Cosmochimica Acta, 233, 115–134. http://doi.org/10.1016/J.GCA.2018.04.035

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.