scor

FacebookTwitter

Helium-3 plumes in the deep Indian Ocean confirm hydrothermal activity

Thanks to samples collected as part of the Japanese GEOTRACES cruise in 2009 – 2010, along section GI04, Takahata and co-workers (2018, see reference below) identified a maximum helium-3 ratios value (δ3He >14%) at mid-depth (2000 - 3000 m) in the northern part (north of 30°S) of the central Indian Ocean, whereas lower ratio was found in the southern part at the same depth. These values identify an hydrothermal helium-3 plume originating from the Central Indian Ridge around 20°S flowing eastward from the ridge as previously reported in WOCE cruises. Another hydrothermal source of helium-3 is observed in the Gulf of Aden, also helping to constrain the deep circulation off the North East African coast.

18 Takahata
Figure: Vertical distribution of excess helium-3 (3He) along 70˚E of the central Indian Ocean. Two hydrothermal plumes are identified at mid-depth; one is from the Central Indian Ridge and the other from Gulf of Aden. Click here to view it larger.

Reference:

Takahata, N., Shirai, K., Ohmori, K., Obata, H., Gamo, T., & Sano, Y. (2018). Distribution of helium-3 plumes and deep-sea circulation in the central Indian Ocean. Terrestrial, Atmospheric and Oceanic Sciences, 29(3), 331–340. http://doi.org/10.3319/TAO.2017.10.21.02

Isotopes Atlantic Ocean Iron Global scale Pacific Ocean Neodymium Neodymium isotopes Particles Multiple TEIs Southern Ocean Zinc Thorium Land-ocean inputs Hydrothermal Arctic Ocean Analysis Modelling Circulation Cadmium Land-ocean input Thorium isotopes Data compilation Indian Ocean Cycles Mercury Radium Speciation Barium Silicon Aerosol input Iron isotopes Copper Manganese Hypoxia Radium isotopes Phosphate Cobalt Rare Earth Element Lead Lead isotopes Aluminium Protocol Mediterranean Sea Aerosols Boundary Exchange Protactinium Thorium-Protactinium Paleoceanography Environmental change Organic matter Nepheloids Aerosol Cadmium isotopes Zinc isotopes International Polar Year Uranium Microbial Rare Earth Elements Benthic Limitation Phytoplankton Oxygen Silicon isotopes Chromium Chronium isotopes BioGEOSCAPES Particulate Organic Carbon Export fluxes Residence times Methylmercury Surface waters Helium Paleocirculation Proxy Nickel Remineralization Nitrogen Sediments Climate change Lanthanum Yttrium Scandium Intercalibration Lithogenic Macronutriments Micronutriments Hafnium Hafnium isotopes Ice Sea ice Helium isotopes Particle fluxes Barium isotopes Biological pump Iodine Uranium isotopes Artificial Intelligence Cadmium sulfide Antarctic geology Beryllium Mammals Phosporus Time Series Productivity Red Sea Distribution coefficient Mesoscale transport Fertilisation Processes Estuaries Mesopelagic Anoxia Black Sea ICPMS Ecosystem CO2 degassing Transmissiometer Eddy Kinetic Energy Fate Scavenging Fractionation Distribution Iron sulfide Precipitation Shelf Inputs River Pitzer equations Gadolinium Intercomparison Coastal area Gallium Submarine Ground Water Discharge Cooper isotopes Total Hg Fertilization Experiments Behavior Budget Atmospheric Dynamic SAFE samples Boundary Scavenging Procedure Osmium Arsenic Aerosols input Nitrate Nutrients Deep water Copper isotopes Dissolved concentations

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.