scor

FacebookTwitter

More realistic oceanic particle field improved the thorium-230 and protactinium-231 modeling

Thorium-230 (230Th) and protactinium-231 (231Pa) are two geochemical tracers extensively used for investigating particle transport in the ocean and reconstructing past ocean circulation. A key feature in reproducing their distributions by modelling is to understand and constrain as good as possible the scavenging processes, which means: 1) having the good adsorption-desorption kinetic rates and 2) describing the up to date best particle field. The later was challenged by the NEMO-PISCES team who considerably improved the particle field description of the NEMO-PISCES model. This recent development allowed van Hulten and co-workers (2018, see reference below) to propose a new simulation of 230Th and 231Pa using a version called NEMO-ProThorP 0.1 in which the dust lithogenic particles were added. Although nepheloid and hydrothermal particles are still missing to better simulate the particle field this new version provides satisfying distributions of both tracers. Thanks to the GEOTRACES field database, comparison of the model results to the measured ones shows more realistic partition coefficients than what was simulated so far. Although further improvements are still needed, this work is an important step forward in our understanding of these tracer behaviors in the ocean.

18 vanHulten l

Figure: Modelled dissolved thorium-230 activity at four depth level (mBqm−3 ); observations are represented as discs on the same colour scale. Click here to view the figure larger.

Reference: 

van Hulten, M., Dutay, J.-C., & Roy-Barman, M. (2018). A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1). Geoscientific Model Development, 11(9), 3537–3556. DOI: http://doi.org/10.5194/gmd-11-3537-2018

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.