Dissolved neodymium (Nd) isotopes and concentrations were measured at six stations in the Australian sector of the Southern Ocean, targeting the study of the Adelie Land Bottom Water (ALBW), a variety of Antarctic Bottom Water formed off the Adélie Land coast of East Antarctica. Lambelet and co-authors (2018, see reference below) present the first dissolved neodymium (Nd) isotope and concentration measurements for ALBW. Summertime ALBW Nd isotopic composition display εNd values of -8.9 ± 1.0, while Adélie Land Shelf Water, the precursor water mass for wintertime ALBW, displays the most negative Nd fingerprint observed around Antarctica so far (εNd = -9.9). The summertime signature of ALBW is distinct from Ross Sea Bottom Water and similar to Weddell Sea Bottom Water. This underlines that Antarctic Bottom waters are not uniform around the continent and carry Nd isotope fingerprints characteristic of their formation area (local geology). This makes these water masses traceable back in time and is hence important for paleoceanography and for the study of past climate change.

18 Lambelet l

Figures: a) Map of the sampling area, with the major fronts crossing the section at the time of the survey depicted in dark grey. b) Histogram representing εNd for bottom waters in the different sector of the Southern Ocean, underlining that Antarctic Bottom waters are not uniform around the continent and carry Nd isotope fingerprints characteristic of their formation area. Click here to view the figure larger.


Lambelet, M., van de Flierdt, T., Butler, E. C. V., Bowie, A. R., Rintoul, S. R., Watson, R. J., Remenyi, T., Lannuzel, D., Warner, M., Robinson, L. F., Bostock, H. C., Bradtmiller, L. I. (2018). The Neodymium Isotope Fingerprint of Adélie Coast Bottom Water. Geophysical Research Letters.

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)


 Data Assembly Centre (GDAC)


Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.