scor

FacebookTwitter

The insoluble radiogenic isotopes of thorium (Th) are produced at a known rate in the water column via the decay of soluble uranium (234Th, 230Th) and radium (228Th) isotopes. These three isotopes are radioactive and their half-lives vary from days (234Th) to years (228Th) to tens of thousands of years (230Th). Combining their known production and decay rates with their insolubility makes them excellent tools to study the particle dynamics on a wide range of timescales.

This toolbox was successfully used by Pavia and co-workers (2019, see reference below) to study particle-dissolved exchange within the hydrothermal plume detected during the GEOTRACES GP16 cruise in the southeast Pacific Ocean. The goal of these authors was to unravel how hydrothermal activity affects the different steps characterizing the scavenging processes, i.e. adsorption and desorption onto particles, particle aggregation, sinking, and eventual sedimentation.

Their main conclusions are that: 1) particle aggregation was occurring much more rapidly in the plume, 2) hydrothermal scavenging is partially irreversible, 3) off-axis hydrothermal Th scavenging rate of 0.15yr−1, value deduced from a modelling and 4) 230Th is surprisingly more depleted than the two other isotopes. This likely reflects progressive scavenging in this region of intense hydrothermal activity and underlines the complexity of interpreting the GP16 hydrothermal plume as being solely a local phenomenon.

19 Pavia

Figure: Depletion observed in three thorium isotopes in the hydrothermal plume observed downstream of the East Pacific Rise on the GEOTRACES GP16 section in the South Pacific Ocean. Plots A), B), and C) show the depletion in each thorium isotope at stations 18 (closest to the ridge axis) to station 21 (furthest from the ridge axis). The depletion increases with increasing half-life of thorium isotope, going from 234Th (half-life = 24.1 days) showing the least depletion, followed by 228Th (half-life = 1.91 years), with 230Th (half-life = 75,587 years) the most depleted. D) Shows the map of the study area, with solid white arrows proportional to current speeds at the plume depth of 2500m, and the white dashed arrow displaying the proposed flowpath of the hydrothermal plume observed in the study, along which thorium is progressively removed from the deep ocean. Click here to view the figure larger.

Reference:

Pavia, F. J., Anderson, R. F., Black, E. E., Kipp, L. E., Vivancos, S. M., Fleisher, M. Q., Charette, M. A., Sanial, V., Moore, W. S., Hult, M., Lu, Y., Cheng, H., Zhang, P., Edwards, R. L. (2019). Timescales of hydrothermal scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th. Earth and Planetary Science Letters, 506, 146–156. DOI: http://doi.org/10.1016/J.EPSL.2018.10.038

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.