scor

FacebookTwitter

Separation of the particulate (> 0:22 μm), colloidal (0.22 μm–1 kDa), and truly dissolved (< 1 kDa) fractions of iron (Fe) was carried out along the 600 km mixing between the Lena river and the Laptev seawater. While 99% of the particulate Fe and 90% of the colloidal one are disappearing across the shelf, the truly dissolved Fe stays relatively constant along the Lena River plume. This could indicate that this truly dissolved fraction is an important source of bioavailable Fe, along with colloidal Fe, for the local Arctic phytoplankton. Conrad and co-workers (2019, see reference below) also determined the Fe isotopes (δ56Fe) on these fractions. Negative colloidal δ56Fe values close to the river mouth are evolving to positive values at the outermost stations (see figure below). The shelf is thus interpreted as a sink for Fe, the negative values representing reduced ferrihydrites. Contrastingly, the positive values would correspond to oxidized Fe oxyhydroxydes, that are remaining in the water column and tag the Fe isotopic signature of the Arctic Ocean.

19 Conrad

Figure: A) Sampling stations in the Arctic Ocean: The black dots mark the sampling stations in the Arctic Ocean. Along the Lena River–Laptev Sea transect (next to the map) we filtered the water samples with different techniques to separate the particles from the colloids and the truly dissolved phase. Iron concentrations and isotope ratios were measured on the different sizes, as well as in the sediments along the East Siberian Sea Shelf. B) The colloidal (CFe) and particulate (PFe) iron concentrations plotted vs. salinity: Particulate Fe is dominating the Fe system close to the river mouth at low salinities, but the increasing salinity along the freshwater plume promotes the flocculation and settling of particles and colloids. Therefore, the concentrations of PFe and CFe are equal at higher salinities. C) Iron-isotope values along the Lena River freshwater plume and the uppermost sediment of the East Siberian Arctic Shelf (ESAS): Negative particulate and colloidal Fe-isotope values are lost during estuarine mixing and buried in the sediment, which shows a similar range of Fe isotope ratios. The positive colloidal Fe isotope values found in the outer plume are resistant to estuarine mixing and can be found in the Arctic Ocean. (Reprinted from Conrad, et al, 2019. Click here to view the image larger. 

Reference:

Conrad, S., Ingri, J., Gelting, J., Nordblad, F., Engström, E., Rodushkin, I., Andersson, P. S., Porcelli, D., Gustafsson, Ö., Semiletov, I., Öhlander, B. (2019). Distribution of Fe isotopes in particles and colloids in the salinity gradient along the Lena River plume, Laptev Sea. Biogeosciences, 16(6), 1305–1319. DOI: http://doi.org/10.5194/bg-16-1305-2019

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.